
An Adversarial Evolutionary Reinforcement
Learning Framework for Large Language

Models

TheHandsomeDev

January 8, 2025

Abstract

Large Language Models (LLMs) traditionally rely on manual prompt
engineering, which can be time-consuming and vulnerable to human
biases. In this paper, we propose an Adversarial Evolutionary
Reinforcement Learning (AERL) framework that builds upon
principles of Evolutionary Reinforcement Learning (EvoRL) [Lin et
al., 2023] to enable continuous self-improvement of AI agents. Our
approach iteratively generates, tests, and refines prompts or configu-
rations via four components: (1) Evolutionary Prompt Writer/
Improver, (2) Evolutionary Models, (3) Adversarial Models,
and (4) Judge. By exposing candidate models to adversarially gen-
erated scenarios and selecting the best variants through evolutionary
operators, AERL fosters robust, domain-specific solutions without re-
lying on excessive human trial-and-error. Inspired by multi-objective
optimization techniques in EvoRL [Bai et al., 2023] and adversarial
training approaches [Goodfellow et al., 2014], our empirical and con-
ceptual examples from decentralized finance (DeFi), code generation,
and mathematical reasoning illustrate the versatility of our framework.
The results indicate that adversarial evolutionary strategies can sys-
tematically reduce human-driven guesswork while maintaining high
adaptability and performance.

1



1 Introduction

1.1 Background and Motivation

Large Language Models (LLMs) have revolutionized tasks like text genera-
tion, code development, and financial predictions. However, current perfor-
mance still hinges on manual prompt engineering, which can be both
inefficient and biased. These limitations become especially critical in rapidly
evolving domains—like decentralized finance (DeFi), where protocols and
market conditions change constantly, or software development, where unan-
ticipated debugging scenarios emerge.

Evolutionary Reinforcement Learning (EvoRL) presents a power-
ful way to address these challenges. According to Lin et al. (2023), EvoRL
integrates evolutionary algorithms (EAs)—which can globally search through
vast solution spaces—with reinforcement learning (RL), providing localized
fine-tuning via gradient methods. In high-dimensional or adversarial environ-
ments, EvoRL has demonstrated remarkable scalability and adaptability [Bai
et al., 2023]. Drawing on these lessons, we propose the Adversarial Evo-
lutionary Reinforcement Learning (AERL) framework for LLMs. By
using adversarial testing in tandem with evolutionary search, AERL reduces
reliance on subjective prompt tweaks and systematically adapts prompts or
configurations over multiple generations.

1.2 Related Work

• Evolutionary Algorithms and EvoRL. Evolutionary algorithms
(EAs) such as genetic algorithms [Holland, 1975] or cross-entropy meth-
ods (CEM) [Botev et al., 2013] have been employed extensively for opti-
mizing neural network parameters, policy learning, or hyperparameters
[Sigaud, 2023]. EvoRL extends these ideas by marrying EAs with RL,
leading to diverse methods like genetic algorithms plus Deep RL (GA-
DRL) [Sehgal et al., 2019], population-based training (PBT) [Jader-
berg et al., 2017], and cross-entropy-based RL (CEM-RL) [Pourchot &
Sigaud, 2018].

• Adversarial Learning. Techniques such as adversarial examples
[Goodfellow et al., 2014] have shown how targeted perturbations can
expose vulnerabilities. In EvoRL, adversarial training has been used

2



to stress-test policies in sparse-reward or high-uncertainty tasks [Liu et
al., 2021], enabling more robust decision-making.

• Prompt Engineering and RLHF. Training language models to fol-
low instructions with human feedback (RLHF) [Ouyang et al., 2022]
has offered a partial solution to bridging the alignment gap. Yet, these
methods remain labor-intensive, requiring humans to generate reward
signals at scale. In contrast, AERL employs automated adversarial
testers plus a “Judge” to assign performance scores, reducing the de-
pendence on human-labeled data.

2 Adversarial Evolutionary Reinforcement Learn-

ing (AERL)

2.1 Conceptual Overview

Our AERL framework consists of four components:

1. Evolutionary Prompt Writer/Improver

• Generates or mutates prompts/configurations. We draw inspira-
tion from previous EvoRL work that uses evolutionary operators
like crossover and mutation [Lin et al., 2023; Bai et al., 2023].

2. Evolutionary Models

• LLM instances—differentiated by prompts or minor hyperparam-
eter changes—evolve similarly to how population-based training
(PBT) evolves different neural network instances in parallel [Jader-
berg et al., 2017].

3. Adversarial Models

• These are specialized LLMs or rule-based systems tasked with
finding “stress tests.” Similar to the multi-agent adversarial setups
in EvoRL [Majumdar et al., 2020], they push candidate models to
confront tricky or deceptive input prompts.

4. Judge

3



• A separate automated system that assigns performance scores
based on domain-specific metrics (correctness, clarity, etc.). It
can be a rule-based script or an LLM applying a scoring rubric.
This is analogous to fitness functions in EAs [Zheng & Cheng,
2023].

2.2 Process Flow

1. Population Initialization

• A set of LLM prompt variants is generated, each with a distinct
style or emphasis. This mirrors the typical “population” initial-
ization in EvoRL [Lin et al., 2023].

2. Adversarial Testing

• The adversarial models craft scenarios designed to probe weak-
nesses (e.g., ambiguous code instructions, tricky DeFi market con-
ditions). This step parallels adversarial novelty search in EvoRL
[Liu et al., 2021].

3. Scoring and Selection

• Each model’s output is scored by the Judge, which might be an
automated test harness or an LLM-driven rubric. In line with
evolutionary strategy approaches [Ajani & Mallipeddi, 2022], top
performers are kept, while underperformers are discarded.

4. Mutation

• The Evolutionary Prompt Writer/Improver introduces changes to
the surviving prompts (e.g., reordering instructions, adding do-
main context, adjusting hyperparameters). This is akin to how
evolutionary algorithms inject genetic diversity [Lin et al., 2023;
Sigaud, 2023].

5. Co-Evolving Adversaries (Optional)

• Similar to co-evolution in multi-agent EvoRL [Majumdar et al.,
2020], adversaries that successfully break candidate models are
preserved, raising difficulty over time.

4



6. Repeat

• The cycle continues until the system hits a predefined generation
limit or reaches performance thresholds determined by the Judge.

2.3 Advantages

• Data-Driven Refinement

– Like other EvoRL approaches [Bai et al., 2023], AERL bases
prompt improvements on empirical performance rather than sub-
jective preferences.

• Robustness via Adversarial Testing

– Continuous adversarial probing (in the spirit of [Goodfellow et al.,
2014]) fosters resilient prompt configurations that better handle
corner cases and malicious inputs.

• Domain Independence

– Techniques from EvoRL have been applied to robotics, finance,
and multi-agent systems [Liu & Feng, 2021]. Similarly, AERL
can adapt to many LLM-driven tasks by swapping in domain-
appropriate adversarial testers and Judge criteria.

3 Implementation and Architecture

3.1 Evolutionary Prompt Writer/Improver

This component can be an LLM or script that executes evolutionary op-
erators (mutation, crossover) on prompts. For instance, it might combine
high-scoring phrases from two top prompts to create a new “hybrid” prompt,
much like the crossover step in genetic algorithms [Holland, 1975; Lin et al.,
2023].

5



3.2 Evolutionary Models

We host multiple versions of the same base LLM (e.g., GPT-4, LLaMA). Each
version is tied to a distinct prompt plus slight config differences (temperature,
max token limit, etc.). This setup parallels the population-based training
concept in EvoRL [Jaderberg et al., 2017], which evolves entire populations
of models to maximize cumulative reward.

3.3 Adversarial Models

Adversaries are crucial for exposing flaws that might remain hidden in “be-
nign” testing [Goodfellow et al., 2014]. For example, in DeFi tasks, adver-
sarial models simulate front-running or yield-farming pitfalls. In code gener-
ation, they might create contradictory function signatures or partial data to
reveal logical oversights.

3.4 Judge

By referencing the broader EvoRL literature, we can treat this Judge like a
fitness function that aggregates multiple performance signals—correctness,
clarity, resource usage, etc. The best solutions get higher scores, ensuring
“survival of the fittest” in an automated manner [Bai et al., 2023].

4 Use Cases and Empirical Illustrations

4.1 Decentralized Finance (DeFi) Agents

1. Initialization: A set of ten prompts covering risk analysis, yield-
farming strategies, and security checks.

2. Adversarial Testing: Generate extreme market swings or contract
front-runs, akin to “edge-case mutation” in EvoRL [Lin et al., 2023].

3. Scoring and Outcome: Evaluate each prompt based on profitabil-
ity and safety. Surviving prompts converge on higher integration of
transaction fees, liquidity pairs, and vulnerability detection—similar
to multi-objective optimization in EvoRL [Li et al., 2023].

6



4.2 Code Generation and Debugging

1. Adversarial Attacks: Provide code specifications with hidden con-
straints or contradictory library calls, resembling novelty search ap-
proaches that push policies to discover rare solutions [Shi et al., 2020].

2. Judge: An automated test suite rewards solutions that compile and
pass a variety of test cases while providing clear docstrings.

3. Result: Prompts that promote test-driven development practices, ref-
erencing known debugging heuristics and adaptive error-recovery steps—much
like “surrogate-assisted” methods in EvoRL that reduce environment
interactions [Wang et al., 2022].

4.3 Mathematical Reasoning

1. Adversarial Queries: Pose multi-step mathematical puzzles with ex-
traneous details, in the style of knowledge-graph or hierarchical agent
tasks.

2. Judge: Validates answers via a ground-truth solver, awarding points
for correctness, clarity, and minimal computational overhead.

3. Outcome: An evolved prompt that systematically encourages step-
by-step derivation, reminiscent of how evolutionary search fosters well-
structured policies in reinforcement learning tasks [Zhu et al., 2023].

5 Discussion

5.1 Reducing Subjective Bias

By integrating adversarial stress tests and an automated scoring system,
AERL systematically reduces the reliance on guesswork. This feature echoes
the data-driven rigor in many EvoRL frameworks [Lin et al., 2023; Bai et
al., 2023].

5.2 Practical Constraints

• Computational Load: Running multiple LLM variants in each gener-
ation can be expensive, especially for large-scale models [Brown et al.,

7



2020]. EvoRL-based solutions often mitigate these costs by training
smaller or distilled models first [Franke et al., 2020].

• Judge Quality: As with fitness functions in EAs, if the Judge’s scoring
method is poorly designed, the process may overfit to unhelpful proxies
[Fernandez & Caarls, 2018].

• Co-Evolving Adversaries: While adversarial co-evolution leads to
robust solutions, it can also create unrealistic “pathological” test sce-
narios, reflecting the typical challenge in multi-agent co-evolution [Ma-
jumdar et al., 2020].

5.3 Ethical and Security Considerations

Adversarial testing can reveal system vulnerabilities, which is a double-edged
sword: beneficial for defensive design but also exploitable by malicious par-
ties. Similar concerns arise in advanced EvoRL robotics and multi-agent
tasks [Kamio & Iba, 2005], underscoring the need for oversight and respon-
sible deployment.

6 Conclusion and Future Work

We introduced AERL, an adversarial evolutionary reinforcement learning
framework that systematically generates and refines LLM prompts, driven
by lessons from the EvoRL literature [Lin et al., 2023; Bai et al., 2023]. By
combining evolutionary search (mutation, selection) with robust adversarial
testing, AERL uncovers highly resilient, domain-adaptive solutions without
relying on excessive human-designed prompts.

Key contributions and takeaways:

• Unified pipeline for generating, evaluating, and improving LLM
prompts in adversarial settings.

• Automated judge that assigns performance metrics in the spirit of fit-
ness functions from EAs.

• Framework-agnostic design, making it suitable for tasks such as DeFi,
code generation, and mathematical reasoning.

8



Future directions include:

1. Co-Evolving Adversarial Models—Expanding the system to dy-
namically adjust adversarial complexity in a multi-agent synergy, akin
to methods in [Majumdar et al., 2020].

2. Multi-Objective Extensions—Incorporating fairness, interpretabil-
ity, or security constraints as additional objectives, aligned with multi-
objective evolutionary approaches [Bai et al., 2023].

3. On-Chain Verification—For DeFi contexts, building on approaches
that fuse EvoRL with real or simulated blockchain interactions, ensur-
ing risk analyses remain up to date with new protocols.

Overall, AERL represents a robust, EvoRL-inspired approach to reduc-
ing human-driven prompt engineering through iterative refinement and ad-
versarial stress testing, charting a path toward truly autonomous AI agents
in various complex domains.

References

1. Ajani, O. S., & Mallipeddi, R. (2022). Adaptive evolution strategy
with ensemble of mutations for reinforcement learning. Knowledge-
Based Systems, 245, 108624.

2. Bai, H., Cheng, R., & Jin, Y. (2023). Evolutionary reinforcement learn-
ing: A survey. Intelligent Computing, 2, 0025.

3. Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., & L’Ecuyer, P. (2013).
The cross-entropy method for optimization. In Handbook of Statistics
(Vol. 31, pp. 35–59). Elsevier.

4. Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language models are
few-shot learners. Advances in Neural Information Processing Systems,
33, 1877–1901.

5. EvolveRL. (2024). EvolveRL: Evolutionary Reinforcement Learning
for LLMs. Retrieved from https://github.com/TheHandsomeDev/

evolverl

9

https://github.com/TheHandsomeDev/evolverl
https://github.com/TheHandsomeDev/evolverl


6. Fernandez, F. C., & Caarls, W. (2018). Parameters tuning and opti-
mization for reinforcement learning algorithms using evolutionary com-
puting. In 2018 International Conference on Information Systems and
Computer Science (INCISCOS) (pp. 301–305). IEEE.

7. Franke, J. K., Köhler, G., Biedenkapp, A., & Hutter, F. (2020). Sample-
efficient automated deep reinforcement learning. arXiv preprint arXiv:2009.01555.

8. Goodfellow, I., Shlens, J., & Szegedy, C. (2014). Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572.

9. Holland, J. (1975). Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press.

10. Jaderberg, M., Dalibard, V., Osindero, S., et al. (2017). Population
based training of neural networks. arXiv preprint arXiv:1711.09846.

11. Kamio, S., & Iba, H. (2005). Adaptation technique for integrating
genetic programming and reinforcement learning for real robots. IEEE
Transactions on Evolutionary Computation, 9(3), 318–333.

12. Lin, Y., Lin, F., Cai, G., Chen, H., Zou, L., &Wu, P. (2023). Evolution-
ary reinforcement learning: A systematic review and future directions.
arXiv preprint arXiv:2309.XXXX.

13. Liu, J., & Feng, L. (2021). Diversity evolutionary policy deep re-
inforcement learning. Computational Intelligence and Neuroscience,
2021, 1–11.

14. Liu, Q., Wang, Y., & Liu, X. (2021). PNS: Population-guided novelty
search for reinforcement learning in hard exploration environments. In
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (pp. 5627–5634). IEEE.

15. Majumdar, S., Khadka, S., Miret, S., et al. (2020). Evolutionary
reinforcement learning for sample-efficient multiagent coordination. In
International Conference on Machine Learning. PMLR, 6651–6660.

16. Ouyang, X., Wu, F., Jiang, J., et al. (2022). Training language
models to follow instructions with human feedback. arXiv preprint
arXiv:2203.02155.

10



17. Pourchot, A., & Sigaud, O. (2018). CEM-RL: Combining evolutionary
and gradient-based methods for policy search. arXiv preprint arXiv:1810.01222.

18. Sehgal, A., La, H., Louis, S., & Nguyen, H. (2019). Deep reinforcement
learning using genetic algorithm for parameter optimization. In 2019
Third IEEE International Conference on Robotic Computing (IRC)
(pp. 596–601). IEEE.

19. Shi, L., Li, S., Cao, L., Yang, L., Zheng, G., & Pan, G. (2020). Efficient
novelty search through deep reinforcement learning. IEEE Access, 8,
128809–128818.

20. Sigaud, O. (2023). Combining evolution and deep reinforcement learn-
ing for policy search: A survey. ACM Transactions on Evolutionary
Learning, 3(3), 1–20.

21. Wang, Y., Zhang, T., Chang, Y., Wang, X., Liang, B., & Yuan, B.
(2022). A surrogate-assisted controller for expensive evolutionary rein-
forcement learning. Information Sciences, 616, 539–557.

22. Zheng, B., & Cheng, R. (2023). Rethinking population-assisted off-
policy reinforcement learning. arXiv preprint arXiv:2305.02949.

23. Zhu, S., Belardinelli, F., & G. León, B. (2023). Evolutionary reinforce-
ment learning for sparse rewards. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (pp. 1508–1512).
ACM.

11


	Introduction
	Background and Motivation
	Related Work

	Adversarial Evolutionary Reinforcement Learning (AERL)
	Conceptual Overview
	Process Flow
	Advantages

	Implementation and Architecture
	Evolutionary Prompt Writer/Improver
	Evolutionary Models
	Adversarial Models
	Judge

	Use Cases and Empirical Illustrations
	Decentralized Finance (DeFi) Agents
	Code Generation and Debugging
	Mathematical Reasoning

	Discussion
	Reducing Subjective Bias
	Practical Constraints
	Ethical and Security Considerations

	Conclusion and Future Work

